Comparison of A1 and A2A receptor dynamics using FRET based receptor sensors
نویسندگان
چکیده
MicroRNAs (miRNAs) are short, 22–25 nucleotide long transcripts that may suppress entire signaling pathways by interacting with the 3’-untranslated region (3’-UTR) of coding mRNA targets, interrupting translation and inducing degradation of these targets. The long 3’-UTRs of brain transcripts compared to other tissues predict important roles for brain miRNAs. Supporting this notion, we found that brain miRNAs co-evolved with their target transcripts, that non-coding pseudogenes with miRNA recognition elements compete with brain coding mRNAs on their miRNA interactions, and that Single Nucleotide Polymorphisms (SNPs) on such pseudogenes are enriched in mental diseases including autism and schizophrenia, but not Alzheimer’s disease (AD). Focusing on evolutionarily conserved and primate-specifi c miRNA controllers of cholinergic signaling (‘CholinomiRs’), we fi nd modifi ed CholinomiR levels in the brain and/or nucleated blood cells of patients with AD and Parkinson’s disease, with treatment-related diff erences in their levels and prominent impact on the cognitive and anti-infl ammatory consequences of cholinergic signals. Examples include the acetylcholinesterase (AChE)-targeted evolutionarily conserved miR-132, whose levels decline drastically in the AD brain. Furthermore, we found that interruption of AChE mRNA’s interaction with the primatespecifi c CholinomiR-608 in carriers of a SNP in the AChE’s miR-608 binding site induces domino-like eff ects that reduce the levels of many other miR-608 targets. Young, healthy carriers of this SNP express 40% higher brain AChE activity than others, potentially aff ecting the responsiveness to AD’s anti-AChE therapeutics, and show elevated trait anxiety, infl ammation and hypertension. Non-coding regions aff ecting miRNA-target interactions in neurodegenerative brains thus merit special attention.
منابع مشابه
Molecular Docking Based on Virtual Screening, Molecular Dynamics and Atoms in Molecules Studies to Identify the Potential Human Epidermal Receptor 2 Intracellular Domain Inhibitors
Human epidermal growth factor receptor 2 (HER2) is a member of the epidermal growth factor receptor family having tyrosine kinase activity. Overexpression of HER2 usually causes malignant transformation of cells and is responsible for the breast cancer. In this work, the virtual screening, molecular docking, quantum mechanics and molecular dynamics methods were employed to study protein–ligand ...
متن کاملSelective Inhibitory Effect of Adenosine A1 Receptor Agonists on the Proliferation of Human Tumor Cell Lines
Background: In this study, the effects of three structural analogues of adenosine upon proliferation of human tumor cells were investigated. Previous research showed a cytotoxic effect of adenosine via A3 receptor and A1 receptor and sometimes this effect was receptor independent. The researches showed a differential cytotoxic effect of adenosine and its A3 agonists on cancerous cells, while ot...
متن کاملAdenosine A1receptor-mediated antiadrenergic effects are modulated by A2a receptor activation in rat heart.
Presently, the physiological significance of myocardial adenosine A2a receptor stimulation is unclear. In this study, the influence of adenosine A2a receptor activation on A1 receptor-mediated antiadrenergic actions was studied using constant-flow perfused rat hearts and isolated rat ventricular myocytes. In isolated perfused hearts, the selective A2a receptor antagonists 8-(3-chlorostyryl)caff...
متن کاملAdenosine A1-A2A receptor heteromers: new targets for caffeine in the brain.
The contribution of blockade of adenosine A1 and A2A receptor to the psychostimulant effects of caffeine is still a matter of debate. When analyzing motor activity in rats, acutely administered caffeine shows a profile of a non-selective adenosine receptor antagonist, although with preferential A1 receptor antagonism. On the other hand, tolerance to the effects of A1 receptor blockade seems to ...
متن کاملThe allosteric enhancer PD81,723 increases chimaeric A1/A2A adenosine receptor coupling with Gs.
PD81,723 {(2-amino-4,5-dimethyl-3-thienyl)-[3-(trifluromethyl)-phenyl]methanone} is a selective allosteric enhancer of the G(i)-coupled A1 AR (adenosine receptor) that is without effect on G(s)-coupled A2A ARs. PD81,723 elicits a decrease in the dissociation kinetics of A1 AR agonist radioligands and an increase in functional agonist potency. In the present study, we sought to determine whether...
متن کاملAdenosine A2A receptors control the extracellular levels of adenosine through modulation of nucleoside transporters activity in the rat hippocampus.
Adenosine, a neuromodulator of the CNS, activates inhibitory-A1 receptors and facilitatory-A2A receptors; its synaptic levels are controlled by the activity of bi-directional equilibrative nucleoside transporters. To study the relationship between the extracellular formation/inactivation of adenosine and the activation of adenosine receptors, we investigated how A1 and A2A receptor activation m...
متن کامل